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Abstract  

Background: Ischemic heart disease (IHD) is a major public health concern. Although many 

epidemiologic studies have reported evidence of adverse effects of particulate matter (PM) mass 

on IHD, significant knowledge gaps remain regarding the potential impacts of different PM 

sources. Like PM size, PM sources may influence toxicological characteristics. 

Objectives: We identified contributing sources to PM10 mass and estimated the acute effects of 

PM10 sources on daily emergency IHD hospitalizations in Hong Kong. 

Methods: We analyzed the concentration data of nineteen PM10 chemical components measured 

between 2001 and 2007 by positive matrix factorization to apportion PM10 mass, and used 

generalized additive models to estimate associations of inter-quartile range (IQR) increases in 

PM10 exposures with IHD hospitalization for different lag periods (up to 5 days), adjusted for 

potential confounders. 

Results: Eight PM10 sources were identified: vehicle exhaust, soil/road dust, regional 

combustion, residual oil, fresh sea salt, aged sea salt, secondary nitrate and secondary sulfate. 

Secondary sulfate, vehicle exhaust, and secondary nitrate contributed over half of the PM10 mass. 

While associations with IQR increases in two-day moving averages (lag01) were statistically 

significant for most sources based on single-source models, only PM10 from vehicle exhaust 

(1.87%; 95% CI: 0.66, 3.10; IQR = 4.9 µg/m3), secondary nitrate (2.28%; 95% CI: 1.15, 3.42; 

IQR = 8.6 µg/m3) and aged sea salt (1.19%; 95% CI: 0.04, 2.36; IQR = 5.9 µg/m3) were 

significantly associated with IHD hospitalizations in multi-source model. Analysis using 

chemical components provided similar findings. 
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Conclusion: Emergency IHD hospitalization was significantly linked with PM10 from vehicle 

exhaust, nitrate-rich secondary PM, and sea salt-related PM. Findings may help prioritize 

toxicological research and guide future monitoring and emission control polices. 
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Introduction  

Over the past decades, epidemiologic evidence has linked ambient particulate matter (PM) 

pollution to increased cardiovascular morbidity and mortality (Dominici et al. 2006; Peng et al. 

2009). Of the cardiovascular endpoints, ischemic heart disease (IHD) is a major public health 

concern. IHD is defined as a narrowing of the coronary vessels that supply blood to the heart 

muscle. It was the leading cause of death worldwide in 2008 and the second leading cause of 

death in Hong Kong, with a population around 7 million and a daily average of 12 IHD deaths in 

2011 (Department of Health HKSAR 2013). Evidence from the U.S. and Europe of increases in 

IHD events after acute exposure to elevated PM concentrations has been convincing (Dominici 

et al. 2006; Forastiere et al. 2005; Pope et al. 2006). It has been estimated that an average 10 

µg/m3 reduction in PM2.5 in 204 U.S. counties would prevent over 1,500 IHD hospitalizations 

per year (Dominici et al. 2006). However, previous studies in Hong Kong did not observe 

associations between PM and IHD hospitalizations (Wong CM et al. 2002, Wong et al. 1999) or 

mortality upon adjusting for gaseous pollutants (Wong TW et al. 2002). Heterogeneity in 

findings may reflect the fact that PM is a complex mixture of particles that vary in physical 

attributes, chemical composition, solubility and emission sources (Pope and Dockery 2006). 

Growing research emphasis has been placed on PM sources and chemical composition (Health 

Effects Institute 2002; U.S. National Research Council 2004). Since PM sources generate 

mixtures of air pollutants with different physicochemical compositions, they might affect the 

relative toxicity of PM. This hypothesis is supported by toxicological evidence suggesting that 

PM-induced biologic effects depended on the zone of origin (e.g. industrial zone) (Alfaro-

Moreno et al. 2002). Currently, the majority of studies have associated IHD, especially 
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myocardial infarction, with traffic-related pollution exposures estimated using surrogate 

pollutants (e.g., PM2.5 mass, carbon monoxide, nitrogen dioxide) or direct exposure data (e.g. 

time spent in traffic) (D’Ippoliti et al. 2003; Lanki et al. 2006b; Peters et al. 2004). Despite these 

findings, it has been a challenge to quantitatively assess the impacts of multiple PM emission 

sources on IHD. Associations with PM sources have been inconsistent across existing studies. 

While some have reported associations of traffic-related and/or combustion-generated PM with 

increases in repolarization, inflammatory markers, and ST segment depressions among IHD 

patients (Lanki et al. 2006a; Yue et al. 2007), others have reported that IHD hospitalizations 

were not linked with traffic-related particles or other PM sources (Halonen et al. 2009; Lall et al. 

2011). 

In Hong Kong, although research on PM pollution and health outcomes has been active since the 

late−1990s, specific PM chemical components and sources responsible for the adverse effects 

have rarely been investigated. In this study, we took advantage of the PM10 speciation data that 

have been available for over a decade to identify contributing sources to PM10 mass using a 

source apportionment model, and estimate the acute effects of PM10 sources on daily emergency 

IHD hospital admissions. 

Methods  

Data  

The Hong Kong Environmental Protection Department has been collecting 24-hour filter 

samples of PM10 regularly at six general and one roadside air quality monitoring stations since 

2001 (Yuan et al. 2012). These monitoring stations were interspersed in different districts of 

Hong Kong. We included only data from the six general stations that are not in direct proximity 
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to traffic, industrial sources, buildings, or residential sources of emissions from the burning of 

coal, waste or oil. These stations serve to capture the air quality that the general population is 

exposed to on a regular basis. Twenty-six PM10 chemical components were speciated from the 

filter samples via various analytical methods as described in detail elsewhere (Yuan et al. 2012). 

Speciation data between 1 January 2001 and 31 December 2007 were included in the present 

study. The PM10 sampling frequency was on average every-sixth-day, with each station operated 

on a distinct sampling schedule. On a particular day, there might be none or multiple samples 

taken across the stations. Overall, 71% of the study days were covered by measurements from at 

least one station. We obtained daily mean temperature, relative humidity from the Hong Kong 

Observatory for the same study period. 

We acquired daily counts of emergency hospital admissions between 1 January 2001 and 31 

December 2007 from the Hong Kong Hospital Authority (Wong et al. 1999). Data were coded 

according to the 9th revision of the International Classification of Diseases (ICD−9; World 

Health Organization 1975). Hospitalizations for IHD (ICD−9:410−414) were extracted to 

construct the time series. Hospitalizations due to influenza (ICD−9:487) were extracted and 

treated as a potential confounder in the regression analysis. 

Statistical analysis  

We first used the U.S. Environmental Protection Agency’s positive matrix factorization (PMF) 

version 3.0 to identify a set of factors, interpreted as emission sources, and to estimate the source 

contributions to PM10 mass (Hopke 2008). Station-specific measurements of elemental carbon 

(EC), organic matter (OM), nitrate (NO3
–), sulfate (SO4

2–), ammonium ion (NH4
+), chloride ion 

(Cl–), sodium ion (Na+), potassium ion (K+), aluminum (Al), arsenic (As), calcium (Ca), 

6
 



 

 

     

          

  

          

    

        

         

     

       

          

         

 

     

       

         

      

      

         

      

 

        

       

cadmium (Cd), iron (Fe), magnesium (Mg), manganese (Mn), nickel (Ni), lead (Pb), vanadium 

(V) and zinc (Zn) of PM10 were entered into the PMF model. Details on PMF modeling have 

been described elsewhere (Reff et al. 2007). 

We removed the station-specific influence on the resultant concentrations of each PM10 source 

by: 1) computing the annual mean concentration (Xi) for each monitoring station i; 2) subtracting 

the annual mean from the daily mean concentration for station i on each sample day j (Xij); 3) 

adding the annual mean of all stations (X) to the resulting centered values (Xij – Xi) for each 

station and sampling day to produce Xʹ′ʹ′ij = Xij – Xi + X; and 4) taking the average of Xʹ′ʹ′ij over all 

stations (Wong et al. 2001). The final PM10 sources time-series contained non-missing territory-

wide mean concentrations of PM10 sources for 1,805 days (71% of the 2,556 total days), which is 

about five days a week. All pollutant concentrations were expressed in µg/m3, except for EC and 

OM reported in microgram of carbon in cubic meter (µgC/m3). 

Generalized additive models with log link and Poisson error were used to estimate the 

associations between PM10 sources and emergency IHD hospital admissions (Hastie and 

Tibshirani 1990). We adopted a priori model specification to guide the selection of degrees of 

freedom (df) for time-varying variables: smoothing splines with 8 df per year for time trend, 6 df 

for current day temperature and previous 3 days moving average, and 3 df for current day 

relative humidity and previous 3 days moving average (Bell et al. 2009; Peng et al. 2009). We 

included dummy variables for day of week, public holidays, and influenza epidemics (Wong CM 

et al. 2002). 

We investigated the possible lag distribution of associations with each PM10 source for exposures 

on the same day (lag0) and for daily exposures on the previous 1 to 5 days (lag1 to lag5). 
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However, we focused primarily on the two-day moving average of exposure on the same day and 

the previous day (lag01) a priori based on previous studies (Wong et al. 2008; Wong CM et al. 

2002). Furthermore, we conducted multi-source analysis to estimate mutually adjusted effects of 

PM10 sources on emergency IHD hospitalizations (Ostro et al. 2011). To minimize 

multicollinearity, we used backward elimination with an exclusion criterion of p > 0.10 to select 

PM sources to include in the final multi-source model, while controlling for time trend, 

seasonality, meteorological conditions, calendar effects and influenza epidemic. Pearson's 

correlations were used to summarize the relationships between source-apportioned PM10. PM10 

"tracer" components, which are characterized as the typical components that are exclusively or 

largely derived from a particular source, were also examined, and those tracers that are found 

specifically in the sources included in the final multi-source model were further tested in a 

separate multi-pollutant model to validate the multi-source findings. A smoothing function with 

3 df was applied to graphically describe the relationships between sources and IHD 

hospitalizations, while adjusting for time-varying confounders. For sensitivity analysis, we 

repeated the time-series analysis after either imputing source concentrations for the days without 

samples from any stations (751 days) by linear interpolation using the na.approx function in the 

R zoo package, or replacing the missing data with non-missing measurement values from the 

previous day. Moreover, we evaluated the impact of alternative df values (5-12) for time trend on 

the risk estimates. All estimates were reported as the percent increase [(relative risk−1)×100%] 

in daily emergency IHD hospital admissions for an inter-quartile range (IQR) increment in 

pollutant concentrations. Where appropriate, 95% confidence intervals were calculated. We 

performed all time-series analyses in the statistical environment R Software, version 2.15.0 (R 

Development Core Team, Vienna). 
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Results  

Eight PM10 sources were identified, namely vehicle exhaust, soil/road dust (e.g., from exposed 

soil, unpaved roads), regional combustion, residual oil combustion (fuel emissions from marine 

vessels), fresh sea salt, aged sea salt, secondary nitrate and secondary sulfate. Figure 1 shows the 

estimated PM10 source profiles, depicted as explained variations (EV) that indicate the relative 

contribution of each source to the variation of a given chemical component (Paatero and Tapper 

1994). For instance, vehicle exhaust emission accounted for 80% of the variation in EC. 

Regional combustion emission was identified as a composite of two sources, which were 

wood/biomass burning based upon the abundance (i.e., large EV) of K+, and coal combustion in 

power plants and industrial facilities in the adjacent Pearl River Delta region based upon the 

abundances of As, Cd, Pb and Zn in the source profile , that cannot be further separated (Yuan et 

al. 2012). Table 1 summarizes the levels of PM10 pollution, weather conditions, and IHD hospital 

admission counts. Between 2001 and 2007, the daily average concentration for PM10 in Hong 

Kong was 55.8 ± 32.5 µg/m3. Secondary sulfate accounted for the largest fraction of total PM10 

mass (23.6%), followed by vehicle exhaust (15.1%) and secondary nitrate (14.9%). The mean 

daily average temperature and relative humidity were 23.6ºC and 78.3% respectively (Table 1). 

During the study period, there were 76,659 hospitalizations for IHD (30 ± 7 admissions per day). 

Single-source models of single-day exposure lags showed similar patterns of associations for 

most of the PM10 sources, in that IHD hospitalizations were positively associated with exposure 

on the same day (lag0), maximal for lag0 or lag1, and lowest at later lags (lag4−lag5) (Figure 2). 

At lag01 (Figure 3A), the source that was most strongly associated with IHD hospitalizations was 

secondary nitrate (2.89% increase; 95% CI: 1.83, 3.95; IQR = 8.6 µg/m3), followed by vehicle 
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exhaust (2.35%; 95% CI: 1.24, 3.47; IQR = 4.9 µg/m3) and regional combustion (2.26%; 95% 

CI: 0.98, 3.55; IQR = 11.7 µg/m3), after adjusting for time trend, seasonality, meteorological 

conditions, calendar effect and influenza epidemic. Significant positive associations were also 

found for particles originated from soil/road dust (per 6.9 µg/m3), residual oil (per 2.2 µg/m3) and 

secondary sulfate (per 15.8 µg/m3), corresponding to estimated increases in IHD hospitalizations 

of 0.97%−1.37%. 

Correlations between source-apportioned PM10 were nil-to-moderate. The highest correlation 

coefficient was 0.67 between regional combustion and secondary sulfate, followed by that 

between regional combustion and secondary nitrate (0.59; Table 2). Backward elimination 

resulted in a multi-source regression model that included vehicle exhaust, aged sea salt, and 

secondary nitrate sources only (Figure 3B). All other sources, though statistically significant in 

single-source models, were eliminated from the final multi-source model based on p > 0.10. The 

estimated effects of vehicle exhaust (1.87%; 95% CI: 0.66, 3.10) and secondary nitrate (2.28%; 

95% CI: 1.15, 3.42) at lag01 were slightly attenuated relative to single-source model estimates, 

but remained significant in the final multi-source model. The association between aged sea salt 

and IHD hospitalizations was stronger based on the multi-source model (1.19%; 95% CI: 0.04, 

2.36; IQR = 5.9 µg/m3) compared with the single-source model (0.68%; 95% CI: -0.43, 1.79). 

Associations with "tracer" components of secondary nitrate and vehicle exhaust were similar, 

that is, NO3
– (tracer for secondary nitrate) and EC (tracer for vehicle exhaust) were associated 

with 1.95% (95% CI: 0.68, 3.25; IQR = 3.4 µg/m3) and 1.67% (95% CI: 0.58, 2.78; IQR = 1.6 

µg/m3) increase in IHD hospitalizations, respectively (Figure 3C). 

10
 

http:0.97%�1.37


 

 

       

        

          

          

        

 

      

            

   

      

              

         

        

   

      

         

       

          

        

     

         

We examined the concentration-response (C-R) relations for vehicle exhaust, aged sea salt and 

secondary nitrate in a multi-source model. We observed moderate positive relationships over the 

IQRs of source concentrations, except for aged sea salt where a neutral relationship was seen 

(data not shown). The risk estimates were not sensitive to alternative time-series models in which 

we imputed missing data (data not shown). Varying df for time trend (5-12 per year, data not 

shown) did not substantially change the regression results either. 

Discussion  

Research directly delineating the health impacts of PM emission sources is relatively limited. 

Most studies rely on ambient concentrations of a PM chemical component as surrogate of the 

combined exposure to one source (Stanek et al. 2011). This a priori selection can be complicated 

when interpreting the results, because many components are emitted from numerous sources, and 

the same component may not serve as tracer to the same source at different locations (Sarnat et al. 

2008). We joined a small but growing number of epidemiologic studies to conduct source 

apportionment analysis and quantitatively estimate the associations between multiple PM sources 

and health outcome. Early short-term air pollution studies conducted in western countries 

identified some associations between PM sources and mortality (Cakmak et al. 2009b; Halonen 

et al. 2009; Ito et al. 2006; Laden et al. 2000; Mar et al. 2000, 2006; Ostro et al. 2011), and 

gradually, researchers have also linked certain PM sources to hospital admissions (Andersen et al. 

2007; Cakmak et al. 2009a; Halonen et al. 2009; Lall et al. 2011; Sarnat et al. 2008). Overall, 

these studies have reported some evidence suggesting that PM sources representing traffic/motor 

exhausts, regional/secondary sulfate, and coal/oil combustion may be more toxic than other PM 

sources, as summarized in a recent review by Stanek et al. (2011). Nonetheless, there is 
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insufficient evidence to draw more specific conclusions across studies. Since emission sources of 

air pollutants vary not only temporally, but also geographically, studies on source-apportioned 

PM mass under different atmospheres are needed to improve our understanding of PM-related 

health effects. 

To our knowledge, this is the first Asian study to investigate the health impacts of multiple PM 

sources. We estimated the associations of short-term exposure to source-apportioned PM10 mass 

with emergency IHD hospital admissions in Hong Kong, a coastal urban city on the boundary 

region of Asian continent and Pacific Ocean. In contrast to previous studies conducted in New 

York City and Helsinki, Finland that reported no associations of PM2.5 sources with IHD hospital 

admissions (Halonen et al. 2009; Lall et al. 2011), we observed significant associations between 

IQR increases in several PM10 sources and daily IHD hospitalizations for single-day lag periods 

up to 5 days prior. Differences between our findings and those of previous studies might be 

related to the longer study period (7 years), larger combined sample size in the present study, as 

well as the differences in pollution compositions and population susceptibility between cities. 

Although precise patho-physiological mechanisms connecting ambient air pollution with IHD 

remain to be determined, it is commonly hypothesized that PM sources may trigger and/or 

enhance the formation of reactive oxygen species that induce inflammation, the formation of 

atherosclerotic plaques as well as vaso-constriction, resulting in reduced oxygen supply of heart 

tissues, and thereby leading to IHD (Lawal and Araujo 2012; Peters 2011). 

Secondary nitrate in PM10 (per 8.6 µg/m3) was associated with the largest increases in IHD 

hospitalizations at lag01 in both single-source and multi-source models. On the other hand, the 

estimated association of secondary sulfate diminished after adjusting for other sources, and 
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secondary sulfate was dropped from the final multi-source model based on the backward 

elimination criterion (data not shown). This is somewhat surprising considering that secondary 

sulfate accounted for the largest fraction of total PM10 in Hong Kong. While most studies that 

examined these associations found that sulfate-rich secondary PM was more strongly associated 

with mortality and hospital admissions than nitrate (e.g., Ito et al. 2006; Mar et al. 2000, 2006; 

Sarnat et al. 2008), a few studies have reported that nitrate in PM2.5, rather than sulfate, was 

significant predictor of mortality (Fairley 1999; Ostro et al. 2011). Secondary nitrate and 

secondary sulfate derive largely from the oxidation of nitrogen oxides and sulfur dioxide emitted 

from combustion of fossil fuels respectively. Whilst both are acidic in nature, their strength of 

acidity varies greatly depending upon the city-specific interactions between local emissions, 

regional transports, and meteorological conditions (Schlesinger and Cassee 2003). Although 

animal toxicological evidence is inconclusive, it is hypothesized that acidic aerosols may lower 

the pH within the airways by depositing hydrogen ions, thereby triggering adverse reactions 

(Kelly and Fussell 2012). In China, strong economic growth and high total energy consumption 

have led to substantial increases in anthropogenic nitrogen and sulfur emissions over the past 

decades (Liu et al. 2013; Lu et al. 2010). Studies showed that emissions of nitrogen oxides and 

sulfur dioxide in the adjacent Pearl River Delta region due to rapid industrialization and 

urbanization have been the dominant contributors to secondary nitrate and secondary sulfate in 

Hong Kong through regional transportation (Guo et al. 2009; Yuan et al. 2012). Our finding on 

secondary nitrate is of particular importance for lending urgency to policy-makers, particularly in 

developing economies, regarding both local and regional emission control and reduction of 

gaseous pollutants. 
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We found that an IQR increment (4.9 µg/m3) in two-day moving average concentration of PM10 

from vehicle exhaust was associated with a 1.91% estimated increase (95% CI: 0.70, 3.13%) in 

IHD hospital admissions after adjusting for other statistically significant sources. In accordance 

with these results, EC as a chemical tracer of vehicle exhaust (largely from diesel engine) was 

also significantly associated with IHD hospitalization risk. Vehicle exhaust-related PM are 

combustion-derived particles that primarily accumulate in the fine fraction of PM10. Previous 

epidemiologic studies have reported that mobile sources PM2.5 and EC are stronger predictors of 

overall cardiovascular outcomes than other sources and components (Cakmak et al. 2009a, 

2009b; Lall et al. 2011; Mar et al. 2006; Ostro et al. 2011; Sarnat et al. 2008), which is consistent 

with our finding of an association of IHD with vehicle exhaust PM. Plausible biological 

mechanisms include elevated levels of inflammatory biomarkers, impaired endothelium-

dependent vasodilation, and promotion of ST-segment depression (Dales et al. 2007; Lanki et al. 

2006a; Yue et al. 2007). In Hong Kong, where road density was among the highest in the world 

at 254 vehicles per kilometer of road in 2009, exposure to traffic-related air pollution is 

ubiquitous (World Bank 2012). These findings on vehicle exhaust particles stress the importance 

of continuous reduction of overall traffic and related emissions, and configuration of urban 

environment to reduce personal exposure to traffic. 

We observed that aged sea salt was associated with an increased risk of IHD hospitalizations 

after adjusting for other sources. Sea salts are most abundantly found in the coarser fraction of 

PM10. While Mar et al. (2006) reported that sea salt was consistently associated with elevated 

cardiovascular and total mortality in Atlanta, Georgia across the various source apportionment 

analyses in an inter-method comparison study, most epidemiologic studies that estimated this 
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association found no relationship between sea salt and health outcomes (Andersen et al. 2007; 

Gent et al. 2009; Lanki et al. 2006a; Ostro et al. 2011). Several studies suggested possible 

relations between sea salt and secondary nitrate, as nitric acid may react with marine particles to 

form coarse mode nitrate along coastal areas (Lee et al. 2008; Zhuang et al. 1999). However, we 

observed null-to-weak correlations between secondary nitrate and sea salts. Such association 

should be investigated further. 

Our findings add to the existing literature in several ways. First, we examined air pollution 

association with specific cardiovascular endpoint, as opposed to a broad composite endpoint of 

different cardiovascular events, to provide better insight into the plausible biologic mechanisms. 

Second, with nearly 80,000 IHD hospital admissions over 7 years, our study was well powered to 

detect statistically significant associations. Moreover, this was one of the few epidemiologic 

studies that focused on exposure to source-apportioned PM10, while most existing studies were 

based on source-apportioned PM2.5. This allowed us to identify adverse associations of not only 

sources that primarily generate finer mode PM10, but also those that produce coarser mode PM10. 

Although we provided evidence of the health impacts of several PM10 sources in Hong Kong, 

these findings should be interpreted with caution. While backward elimination procedure was 

used to identify a subset of predictors with the most statistically significant relationship with IHD 

hospitalization, this approach might not guarantee a truly "best" reduced model (Breiman 1996). 

The importance of PM10 sources (e.g., regional combustion, secondary sulfate) excluded from 

the final multi-source model should not be diminished, as the statistical elimination procedure 

does not indicate or account for biological importance. Another limitation of this study was the 

every-sixth-day sampling scheme for the PM10 speciation data, resulting in nearly one-third of 
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study days without samples from any stations. Exposure misclassification error might exist, 

however, our risk estimates were insensitive to alternative interpolation methods (data not 

shown). Moreover, PM from local emissions (e.g., vehicle exhaust, soil/road dusts) tends to have 

more error than regional PM sources (e.g., secondary PM), given their higher spatial 

heterogeneity (Ito et al. 2004). Such issues of representativeness associated with PM sources 

may hinder the interpretations of the relative strengths of the observed associations in monitor-

based studies of ambient PM pollution. 

Conclusion  

We report evidence that PM10 from vehicle exhaust, nitrate-rich secondary PM, and sea salt-

related PM were significantly associated with elevated IHD hospitalization risks in Hong Kong. 

This study joins a growing body of literature to report evidence of adverse effects of source-

apportioned PM mass, which would help prioritize research on the biologic mechanisms linking 

PM pollution to cardiac events and guide future monitoring and emission control polices. 
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Table 1. Descriptive statistics for PM10 sources, meteorological factors and number of 

emergency hospital admissions in Hong Kong, 2001-2007. 

Variables No. of days Daily mean ± SD Proportion (%) IQR 

Emergency hospital admissions (counts) 

Ischemic heart diseases (IHD) 2556 30 ± 7 9 

Meteorological conditions 

Temperature (ºC) 2556 23.6 ± 4.9 8.1 

Relative humidity (%) 2556 78.3 ± 9.9 11.4 

PM10 concentration (µg/m3) 

Total PM10 1805 55.8 ± 32.5 100 44.8 

Vehicle exhaust 1805 8.4 ± 3.7 15.1 4.9 

Soil/road dust 1805 7.5 ± 9.0 13.4 6.9 

Regional combustion 1805 7.5 ± 9.3 13.5 11.7 

Residual oil 1805 2.4 ± 2.5 4.3 2.2 

Fresh sea salt 1805 2.1 ± 2.7 3.7 2.0 

Aged sea salt 1805 7.2 ± 4.4 12.8 5.9 

Secondary nitrate 1805 8.3 ± 8.8 14.9 8.6 

Secondary sulfate 1805 13.2 ± 12.7 23.6 15.8 

Abbreviations: SD, standard deviation; IQR, inter-quartile range. 
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Table 2. Pearson's correlation among the estimated sources of PM10. 

PM10 Vehicle 
exhaust 

Soil/road 
dust 

Regional 
combustion 

Residual 
oil 

Fresh sea 
salt 

Aged sea 
salt 

Secondary nitrate 

PM10 1 

Vehicle exhaust 0.48 1 

Soil/road dust 0.58 0.21 1 

Regional combustion 0.84 0.49 0.38 1 

Residual oil 0.40 0.35 -0.02 0.29 1 

Fresh sea salt 0.10 -0.18 0.12 -0.07 -0.11 1 

Aged sea salt 0.07 -0.27 0.08 -0.22 -0.11 0.23 1 

Secondary nitrate 0.76 0.34 0.29 0.59 0.34 0.24 0.05 1 

Secondary sulfate 0.78 0.30 0.20 0.67 0.38 -0.15 -0.02 0.43 
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Figure Legends 

Figure 1. PM10 source profiles, indicated by explained variations (EV) that estimate how much a 

source explains the variation of a particular chemical component. 

Figure 2. Percent change (95% CIs) in emergency IHD hospital admissions per IQR increment 

in PM10 mass and sources at different lag periods, adjusted for meteorological factors, seasonal 

and temporal trend, day-of-week and influenza epidemic. See Table 1 for individual IQR values. 

Figure 3. Percent change (95% CIs) in emergency IHD hospital admissions per IQR increment 

in two-day moving average concentration (lag01) of PM10 sources based on single-source models 

(A), multi-source model (B), and PM10 trace elements based on multi-pollutant model (C). All 

models were adjusted for time trend, seasonality, meteorological conditions, calendar effects and 

influenza epidemic. See Table 1 for individual IQR values for sources, and the IQR for EC 

(tracer for vehicle exhaust), Na+ (for aged sea salt), and NO3− (for secondary nitrate) was 1.6, 1.2 

and 3.4 µg/m3 respectively. 
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